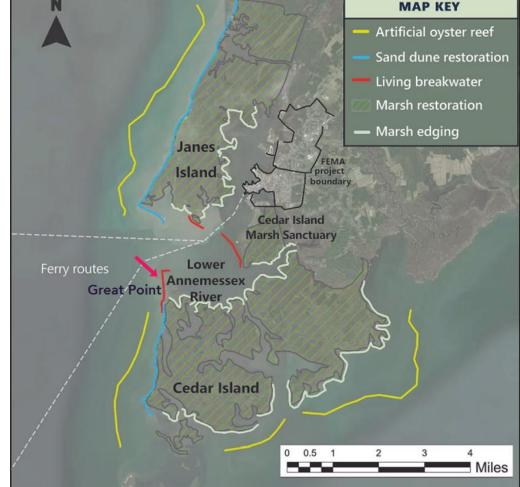
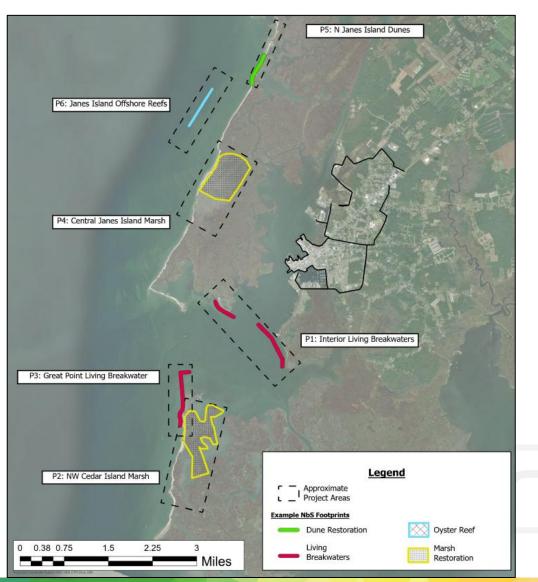

Review of Suitable NBS Around Crisfield



Living Shorelines

Dune Restoration

Marsh Restoration


Artificial Reefs

Top 6 Proposed Implementable NBS Projects for Crisfield

- Long Point and Cedar Island Marsh Sanctuary *living* breakwaters
- 2. Northwest Cedar Island *marsh restoration* and edging
- 3. Great Point *living breakwater*
- 4. Central Janes Island *marsh restoration* and edging
- 5. North Janes Island *dune* restoration
- 6. Central Janes Island *offshore oyster reefs*

Crisfield nature-based solutions prioritization

Project Rank & Name	Project Description	Protection for Crisfield prioritization	"Adaptive, Independent, and Additive" prioritization	Benefit-cost prioritization	Total Score
P1: Interior Living Breakwaters	Long Point and Cedar Island Marsh Sanctuary living breakwaters	5 5		3	13
P2: NW Cedar Island Marsh	Marsh creation, restoration, runneling, and edging along the Tangier Sound shoreline of Cedar Island	4 3		4	11
P3: Great Point Living Breakwater	Living breakwater at Great Point with marsh edging along northern shore of Cedar Island	3 5		3	11
P4: Central Janes Island Marsh	Marsh creation, restoration, runneling, and edging along Tangier Sound shoreline of central Janes Island	3	3	4	10
P5: N Janes Island Dunes	Dune restoration along Tangier Sound shoreline of north Janes Island near green kayak trail tidal inlet	2	4	3	9
P6: Janes Island Offshore Reefs	Subtidal oyster reefs along Janes Island bayward of green kayak trail tidal inlet	1	2	5	8

3

Approximate unit cost for nature-based solution features TE TETRA TECH

Nature-based solution feature	Unit dimension at median cost	Unit cost (low end)¹	Unit cost (high end)¹	Estimated Cost Low	Estimate Median Cost	Estimated Cost High	Notes on cost coverage
Oyster reef	~33,950 square feet (ft²) [implemented as a series of ten parallel staggered broken lines spaced 3 ft apart]	\$203/lf	\$386/lf	\$4,208,000.00	\$9,994,000.00	\$15,780,000.00	Ecological baseline assessment, design, permitting, restoration materials (oyster substrate), labor, monitoring, and maintenance
Dune restoration	~2,855 linear feet (ft)	\$2,000/lf	\$5,000/lf	\$5,710,000.00	\$9,992,500.00	\$14,275,000.00	Ecological baseline assessment, design, engineering, permitting, materials (e.g. plants), equipment for purchase or lease, and monitoring
Marsh restoration	~263 acres (ac)	\$16,000/ac	\$60,000/ac	\$6,891,850.00	\$9,998,275.00	\$13,104,700.00	Ecological baseline assessment, design, engineering, permitting, materials, equipment for purchase or lease, monitoring, labor and maintenance
Living breakwater	Preliminary dimensions and costs of these breakwaters are evaluated in a United States Army Corps of Engineers feasibility study (USACE 2012). The following are the breakwater lengths as modeled: Great Point (~5,700 lf), Interior Breakwaters (~6,700 lf). Costs for breakwaters can greatly exceed \$1,000/lf.		Alternative 1, Option B of the USACE study includes breakwaters at Great Point and Long Point/Cedar Island Marsh Sanctuary for a total cost of \$9.2M. Due to its age, this estimate is included only for demonstration purposes only. Based on a \$2,000/lf cost: Great Point (~\$11.4M) and Interior Breakwaters (~\$13.4M)			USACE Cost for Great Point, Long Point, and Cedar Island Marsh Sanctuary Breakwaters ² .	

Spread in completed project costs reported in the NOAA green infrastructure effectiveness database (NOAA 2025b)

^{• 2}Note that the cost is outdated by around 12 years.

5

Long Point and Cedar Island Marsh Sanctuary (interior) living breakwaters

TETRA TECH

Wave height reduction:

 Wave height reductions to Crisfield's shorefront are most substantial compared to all other solutions.

- Can be implemented as standalone projects within an adaptive management framework.
- Capital expense can be high, but can support local oyster and seagrass recruitment.

Northwest Cedar Island marsh restoration and edging

- High wave reduction benefits. Geographically important to shielding Crisfield from coastal hazards.
- Would benefit from the presence of barriers such as dunes or breakwaters to mitigate edge erosion.
- Can be expensive to implement and maintain over time, but can support local biodiversity.

- Moderate wave reduction benefits. Protects, restores, and enhances important geographic feature. May reduce erosion within Little Annemessex.
- Can be implemented as standalone projects within an adaptive management framework.
- Capital expense can be high, but can support local oyster and seagrass recruitment.

Central Janes Island marsh restoration and edging

- Moderate wave reduction benefits. Marsh highly degraded and in geographically "thin" point along Janes Island.
- Would benefit from the presence of barriers such as dunes or breakwaters to mitigate edge erosion.
- Can be expensive to implement and maintain over time, but can support local biodiversity.

TETRA TECH

North Janes Island dune restoration

- Local erosion reduction. In area of high erosion potential and possible breaching.
- Can be standalone project combining beach nourishment with dune restoration.
 Can be supported by marsh fringe vegetation and offshore reefs.
- Can be very expensive to implement and maintain over time, but can support local biodiversity and recreation.

TETRA TECH

Central Janes Island offshore oyster reefs

- Local wave height and erosion reduction due to oyster reefs is most substantial here, but relatively low compared to other NbS.
- Success depends on local habitat suitability. Will function independently but serve as an additive feature within an adaptive management framework.
- Moderately expensive to implement and maintain, and can improve local water quality and support biodiversity

